Generalized lax Veronesean embeddings of projective spaces

نویسندگان

  • Z. Akça
  • A. Bayar S. Ekmekçi
  • R. Kaya
  • J. A. Thas
  • H. Van Maldeghem
چکیده

We classify all embeddings θ : PG(n,K) −→ PG(d,F), with d ≥ n(n+3) 2 and K,F skew fields with |K| > 2, such that θ maps the set of points of each line of PG(n,K) to a set of coplanar points of PG(d,F), and such that the image of θ generates PG(d,F). It turns out that d = 12n(n+ 3) and all examples “essentially” arise from a similar “full” embedding θ′ : PG(n,K) −→ PG(d,K) by identifying K with subfields of F and embedding PG(d,K) into PG(d,F) by several ordinary field extensions. These “full” embeddings satisfy one more property and are classified in [4]. They relate to the quadric Veronesean of PG(n,K) in PG(d,K) and its projections from subspaces of PG(d,K) generated by sub-Veroneseans (the points corresponding to subspaces of PG(n,K)), if K is commutative, and to a degenerate analogue of this, if K is noncommutative.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Veronesean embeddings of projective spaces

We classify all embeddings θ : PG(n, q) −→ PG(d, q), with d ≥ n(n+3) 2 , such that θ maps the set of points of each line to a set of coplanar points and such that the image of θ generates PG(d, q). It turns out that d = 1 2n(n+3) and all examples are related to the quadric Veronesean of PG(n, q) in PG(d, q) and its projections from subspaces of PG(d, q) generated by sub-Veroneseans (the point s...

متن کامل

Embeddings of small generalized polygons

In this paper we consider some finite generalized polygons, defined over a field with characteristic 2, that admit an embedding in a projective or affine space over a field with characteristic unequal to 2. In particular, we classify the (lax) embeddings of the unique generalized quadrangle H(3, 4) of order (4, 2). We also classify all (lax) embeddings of both the split Cayley hexagon H(2) and ...

متن کامل

Embeddings of Orthogonal Grassmannians

In this paper I survey a few recent results on projective and Veronesean embeddings of orthogonal Grassmannian and propose a few conjectures

متن کامل

Lower bounds for projective designs, cubature formulas and related isometric embeddings

Yudin’s lower bound [21] for the spherical designs is generalized to the cubature formulas on the projective spaces over a field K ⊂ {R, C, H} and thus to isometric embeddings l 2;K → l p;K with p ∈ 2N. For large p and in some other situations this is essentially better than those known before. AMS Classification: 46B04, 05B30

متن کامل

Fourth Veronese Embeddings of Projective Spaces

We prove that fourth Veronese embeddings of projective spaces satisfies property N9. This settle the Ottaviani-Paoletti conjecture for fourth Veronese embeddings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009